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Abstract

The max-eigenvector of a symmetrically reciprocal matrix A can be used to construct
a transitive matrix that is closest to A in a relative error measure. As an alternative to the
Perron eigenvector, the max-eigenvector can be used successfully for ranking in the analytical
hierarchy process. When either one measurement is corrected or a new alternative is added,
the max-eigenvector gives more consistent rankings. Some properties of the max-eigenvector
that are important in this process are discussed, and an O(n3) procedure to calculate the max-
eigenvector is detailed.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In decision making, given n � 3 alternatives A1, . . . , An, the number aij indi-
cates the strength with which alternative Ai dominates alternative Aj with respect to
a given criterion. The numbers aij are usually deduced from an experiment, opinion
poll or voting behavior. In this way a pairwise comparison matrix can be constructed.
Such an n-by-n positive matrix A = (aij ) has aij aji = 1 for all i, j = 1, . . . , n,
thus aii = 1. Matrices having these properties are called symmetrically reciprocal
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matrices (SR-matrices) (see, for example [7,9]). These matrices were introduced by
Saaty [11] and used in the analytic hierarchy process (AHP) for multicriteria decision
making. It is required to deduce positive weights w1, . . . , wn attached to the alter-
natives A1, . . . , An respectively, from the SR-matrix A. In this way the alternatives
can be ranked. For the ideal case, aij = wi/wj for i, j = 1, . . . , n. Matrix A is then
an SR-matrix of rank one, which is called a transitive (consistent) matrix. However,
in a realistic case aij is only approximately given by wi/wj .

There are several suggestions in the literature for constructing a weight vector
w = (w1, . . . , wn). Saaty [11] himself proposes taking the Perron vector of A and
gives some reasoning for that. In [7] the vector w is chosen in such a way that the
matrix with the entries wi/wj has minimal distance from A in the Euclidean matrix
norm, i.e., that

n∑
i,k=1

(aik − wi/wk)
2

is minimal (see also [12]).
Here we propose a different choice, namely taking the max-eigenvector of A.

This concept is explained in Section 2. Besides the formal similarity to the Saaty
procedure, it turns out that for an SR-matrix A the max-eigenvector x also solves a
useful optimization problem, namely minimizing the relative error

e(w) = max
i,k

∣∣∣∣aik − wi/wk

aik

∣∣∣∣. (1)

Numerically the max-eigenvector can be determined in an O(n3) procedure (see,
e.g., [5]).

We now give a short overview of this paper. In Section 2, the max-algebra is in-
troduced and some important properties of the max-eigenvalue and max-eigenvector
for a nonnegative matrix A are given. In Section 3, a max-eigenvector is shown to
be a solution to the optimization problem described above. In Section 4, properties
of the max-eigenvector that play a role in the AHP are studied. When one pair of
entries of A is changed, monotonicity properties of the eigenvector are given. These
have implications in the ranking question. When new alternatives are introduced,
mathematically augmenting the SR-matrix A by an additional row and column, in
many cases the eigenvector is changed only in a manner that does not affect the
ranking. Finally, a MATLAB program to calculate the max-eigenvalue and a max-
eigenvector of a positive matrix A is given, followed by some numerical examples
to demonstrate the use of the max-eigenvector in rankings.

2. Max-eigenvalues and max-eigenvectors

The max-algebra we consider here is the set R+ of nonnegative real numbers,
where for a, b ∈ R+ the sum a ⊕ b is defined as max{a, b} and the product is defined
as the usual product ab. For vectors x = (xi), y = (yi) in Rn+ and c ∈ R+ the vectors
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x ⊕ y = (max{xi, yi}) and cx = (cxi) are defined elementwise. The sum A ⊕ B of
two matrices is defined analogously.

If A = (aik) is a nonnegative n-by-n matrix then the map
x ∈ Rn+ 	⇒ A ⊗ x ∈ Rn+,

where (A ⊗ x)i = maxk aikxk, i = 1, . . . , n is linear in the sense given above, namely
for all x, y ∈ Rn+, c ∈ R+

A ⊗ (x ⊕ y) = (A ⊗ x) ⊕ (A ⊗ y),A ⊗ (cx) = c(A ⊗ x).

The max-product C = (cil) = A ⊗ B of two n-by-n nonnegative matrices A =
(aik) and B = (bkl) is defined by cil = maxk aikbkl, i, l = 1, . . . , n. It describes the
map byB followed by the map byA. The k-fold power ofA using this matrix product
is denoted by Ak⊗. It is shown in [2] and in [1], where the max-plus algebra (which
is isomorphic to the max-algebra) is treated, that for irreducible A there is a unique
positive number µ = µ(A) and a vector x > 0 such that

A ⊗ x = µ(A)x. (2)

Here µ(A) is called the max-eigenvalue of A and x is a max-eigenvector. The max-
eigenvalue has some important and interesting representations. Firstly, µ(A) is the
maximal geometric cycle-mean of A. Given a cycle of length r described by a se-
quence of integers i1, i2, . . . ir , i1 ∈ {1, . . . , n}, then

(ai1i2ai2i3 . . . air i1)
1/r � µ(A),

and there is one cycle so that equality is attained.
Also as shown in [6], for irreducible A

µ(A) = min
v>0

max
i,k

aikvk/vi = max
i,k

aikxk/xi, (3)

where x = (x1, . . . , xm)
T is a max-eigenvector of A as in (2).

Generically the max-eigenvector is, up to a scaling, uniquely defined. In [2] the
cases with more than one max-eigenvector are described; see [5] and Section 5 for
algorithms to calculate the eigenvectors. We conclude this section by the observation
that for an SR-matrix A, all cycle products of length two are 1, hence µ(A) � 1. If,
in addition, all cycle products of length three are 1, i.e., aikaklali = 1, equivalently
aikakl = ail then all cycle products are 1. In this case µ(A) = 1 and it follows that
aij = ui/uj , i, j = 1, . . . , n, where the ui are given, for example, by the first column
of A. Thus A is a transitive matrix, and by the above considerations has max-eigen-
value 1. Trivially, for a transitive matrix A = (ui/uj ), the max-eigenvector is given
by (ui), which coincides with the Perron vector.

3. Relative errors and the max-eigenvector

We begin with the following inequality that is straightforward to verify.

Lemma 1. For positive numbers a, b, ε the following are equivalent.
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1

1 + ε
� ab � 1 + ε, (4)

∣∣∣∣a − 1

b

∣∣∣∣ � εa and

∣∣∣∣1a − b

∣∣∣∣ � ε
1

a
. (5)

A simple consequence of this Lemma is the following result that shows how the
max-eigenvector of an SR-matrix A is used to construct a transitive matrix B that
minimizes the distance from A in the relative error measure.

Theorem 2. Let A = (aik) > 0 be an n-by-n SR-matrix, w = (w1, . . . , wn)
T a pos-

itive n-vector and B = (bik), where bik = wi/wk . Let ε > 0. Then the following
statements are equivalent

|aik − bik| � εaik, i, k = 1, . . . , n, (6)

aikwk/wi � 1 + ε, i, k = 1, . . . , n. (7)
In particular, choosingwi = xi, i = 1, . . . , n,where x = (x1, . . . , xn)

T is a max-
eigenvector of A with max-eigenvalue µ(A), then ε = µ(A) − 1 is minimal, and

min
w>0

e(w) = e(x) = max
i,k

∣∣∣∣aik − xi/xk

aik

∣∣∣∣ = µ(A) − 1. (8)

Proof. Applying Lemma 1 with a = aik, and b = wk/wi for all i � k and using
the fact that A is an SR-matrix shows the equivalence of (6) and (7). Note that since
A is an SR-matrix the two inequalities of (4) are equivalent, and similarly the two
inequalities of (5) are equivalent.

It follows from (1) that for any w > 0

1 + e(w) = max
i,k

aikwk/wi.

By (3) the right hand side is minimized by choosing w as a max-eigenvector of A.
Hence this choice also minimizes e(w), proving (8). �

So the problem of minimizing e(w) is equivalent to scaling A with a diagonal
matrix W = diag(w1, . . . , wn), namely

A −→ W−1AW, aik −→ aikwk/wi,

such that the maximal element of the scaled matrix is minimal. We remark that the
positions of the maximal elements in W−1AW also give the positions where aik is
furthest away from wi/wk . This is an additional advantage of our approach.

4. The behavior of the max-eigenvector

It is well-known and follows easily from each of the representations of the max-
eigenvalue that µ(A) is a monotonically nondecreasing function of the entries of A.
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However, nothing seems to be known about the change of the max-eigenvector as
A changes. Knowing its behavior is important in the AHP, in which the ranking of
the alternatives Ai is often more important than the actual values of the weights wi

attached to the alternatives by the AHP.
There are two types of changes to the original problem that are considered in

the literature. Firstly, some measurement in the pairwise comparison SR-matrix A is
corrected, i.e., some aij is replaced by aij t (and hence aji by aji/t) for t > 0. This
is studied in Theorems 5 and 6. Secondly, a new alternative is added. This amounts
to bordering A by a new row and column. Does this change the weights, in our
case the entries of the max-eigenvector, and if so, does it change the ranking? We
study this question in Theorem 7. As it turns out the max eigenvector behaves more
consistently than the Perron vector.

We first treat the case that exactly one pair of entries is changed, and w.l.o.g. as-
sume that this is the pair (1, 2) and (2, 1). LetA = (aij ) > 0 be an n-by-n SR-matrix.
For t > 0 define the SR-matrix A(t) = (aij (t)) by

aij (t) =


a12t when i = 1, j = 2,
a21/t when i = 2, j = 1,
aij otherwise .

and the continuous function µ(t) = µ(A(t)). We then have the following lemmas
that lead to the main results in Theorems 5 and 6.

Lemma 3. Let n � 3. There exist positive numbers T1 � T2 such that µ(t) is strictly
decreasing in (0, T1], is constant in [T1, T2] and strictly increasing in [T2,∞). For
t ∈ (0, T1) and for t ∈ (T2,∞) the max-eigenvector is unique up to scaling. Fixing
the eigenvector x(t), e.g., by setting the last entry to 1, the eigenvector is continuous
in t . If I = (T1, T2) /= φ, then either the max-eigenvector is unique for all t ∈ I or
the eigenvector is nonunique for all t ∈ I .

Proof. Each cycle mean of A(t) is either strictly increasing in t (if it contains the
term a12(t) and not a21(t)), strictly decreasing (if it contains the term a21(t) and not
a12(t)), or is constant in the other cases. As µ(t) is the maximum of the cycle means
of A(t), the first claim follows.

If t > T2 then all maximal cycles contain the factor a12(t), so they are connected.
By a well known result, e.g., in [2], the max-eigenvector is uniquely defined. The
case t < T1 is treated similarly. A simple analysis using the boundedness of the vec-
tors x(t) shows continuity in these cases.

For all t ∈ I the maximal cycles of A(t) are the same, so they are either con-
nected, giving uniqueness, or they are not, in which case the eigenvectors are not
unique. �

We remark that in general there can be nonuniqueness of the max-eigenvector in
[T1, T2]. For n = 3, it can be shown that I = φ.
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Lemma 4. In the situation of Lemma 3 define µ0 = min{µ(t), t > 0}. Then the
following are equivalent.

(i) µ0 = 1.
(ii) I = φ.

(iii) The rank of A(t) is 1 for some t = t0.

Proof. We introduce the nonnegative n-by-n matrix B = (bij ), where bij = aij for
all (i, j) except that b12 = b21 = 0. Let x > 0 be a max-eigenvector of B associated
with the max-eigenvalue µ(B). Clearly, as B � A(t) for any t , µ(B) � µ0. We show
that µ(B) = µ0.

Assume first that µ(B) = 1. Then by scaling A(t) and B with the max-eigen-
vector x, all entries of A(t) are one except those in positions (1, 2) and (2, 1). For
suitable t0 these are also one, so A(t0) has rank one and µ(t) > 1 for all other values
of t . Hence t0 = T1 = T2, µ0 = µ(B), and I = φ. Now (i) implies µ(B) = 1, and
thus (i) → (ii).

Assume now that µ(B) > 1. Then A(t) ⊗ x coincides with B ⊗ x = µ(B)x ex-
cept in entries 1 and 2. These are given by µ(B)x1 ⊕ a12tx2 and µ(B)x2 ⊕ x1a21/t

and are equal to µ(B)xi iff

1/µ(B) � ta12x2/x1 � µ(B) (9)

holds. So also in this case µ(B) = µ0, A(t) ⊗ x = µ(B)x holds, and hence in this
situation I /= φ. Thus (ii) −→ (i). The equivalence of (i) and (iii) is trivial. �

Observe that (9) gives upper and lower bounds on T1 and T2 respectively. These
are however not sharp. It is possible to improve the bounds. We can show that for all
t satisfying

µ−2
0 max

j�3
aj2x2/xj � a12tx2/x1 � µ2

0

(
max
j�3

aj1x1/xj

)−1

, (10)

we have µ(t) = µ0. The proof is somewhat lengthy and not given in this paper.
For the max-eigenvectors we have the following result.

Theorem 5. Let 0 < t0 < t1 and x, y > 0 be max-eigenvectors of A(t), so that

A(t0) ⊗ x = µ(t0)x, A(t1) ⊗ y = µ(t1)y.

(i) If µ(t0) < µ(t1) then y1/x1 > yi/xi for i � 2.
(ii) If µ(t0) > µ(t1) then y2/x2 < yi/xi for i /= 2.

Proof. Note that for m � 2, it follows from the definition of A(t) that amk(t1) �
amk(t0). Now assume the contrary of (i), namely that µ(t0) < µ(t1) and for some
m � 2

ym/xm = max
i

yi/xi .
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The following chain of inequalities holds:

0 < µ(t0)ym/xm < µ(t1)ym/xm

= 1/xm max
k

amk(t1)(yk/xk)xk

� 1/xm max
k

amk(t0)(ym/xm)xk (11)

= ym/xm max
k

amk(t0)xk/xm

= µ(t0)ym/xm.

This contradiction proves (i).
The second result follows from (i) by interchanging the roles of A(t0) and A(t1)

and exchanging rows and columns 1 and 2. �

We notice that the proof in the previous theorem follows closely that of Thm. 2.1
in [3] that treats the standard algebra case. We also notice that in the proof of (i) the
fact that only one element in the first row is increased is not used. Also it is only used
that the entries in the other rows are not increased, so the two matrices involved need
not be SR-matrices.

Remark. We discuss here briefly the case I = φ (see Lemma 4). Assume that t0 =
1, which can be achieved by a shift, so that A = A(1) is of rank 1. Then we can show
that µ(t) = max(t1/3, t−1/3) and that a max-eigenvector x(t) is given for all t > 0
by

x(t) = (t1/3, a21t
−1/3, a31, . . . , an1)

T. (12)

Hence such a perturbation of a transitive matrix only affects two entries of the
weight vector. Rank reversal, i.e., when the order of the first and second entry is
reversed, appears exactly at t = a

3/2
21 . This very simple behavior should be contrasted

with the complicated behavior of the Perron vector in this situation, as discussed,
e.g., in [8].

We now consider the more complicated case of equality.

Theorem 6. Under the conditions and assumptions of Theorem 5 assume that
µ(t0) = µ(t1).

(i) If there is τ ∈ (t0, t1) such that µ(τ) < µ(t0) then

y1/x1 � yi/xi � y2/x2, i = 1, . . . , n (13)

and in addition

y1/x1 > y2/x2. (14)

(ii) If on the other hand tj ∈ (T1, T2) for j = 0, 1 and at least for one t ∈ {t0, t1} the
max-eigenvector is unique, then inequality (13) also holds.
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Proof. Consider the first case, in which t0 < T1 and t1 > T2. LetA(τ) ⊗ z = µ(τ)z.
Now apply Theorem 5, (ii) to x and z. This yields

z2/x2 < zi/xi, i /= 2, (15)

and applying Theorem 5, (i) to z and y leads to

y1/z1 > yi/zi, i � 2. (16)

Multiplying (15) with i = 1 and (16) with i = 2 immediately gives (14). Now let
τ → t0 from above. Then suitably scaled, z → x, and from (16) the left inequalities
in (13) hold. Similarly considering τ → t1 from below yields the second inequalities
in (13).

The proof of case (ii) is very technical and thus placed in Appendix A. �

In the last part of this section we consider the situation that a new alternative is
added, equivalently that the SR-matrix A is bordered by a new row and column.
Starting from an n-by-n SR-matrix A with max-eigenvalue µ and max-eigenvector
x, so that

A ⊗ x = µx, (17)

the extended SR-matrix Ae is constructed from A by bordering with a positive vector
u = (u1, . . . , un)

T. Specifically,

Ae =
(

A u

u−1 1

)
, (18)

where u−1 = (u−1
1 , . . . , u−1

n ). We see in the following that for a large set of vec-
tors u > 0 the max-eigenvalue is not increased and that the max-eigenvector is just
extended by a suitable number.

Theorem 7. Assume that µ > 1 and take Ae as in (18) with A as in (17). The
following are equivalent:

(i) µ(A) = µ(Ae) = µ, and there is α > 0 such that (xT, α)T is the max-eigenvec-
tor of Ae.

(ii) maxk(uk/xk)maxk(xk/uk) � µ2.
Sufficient conditions for u to satisfy (i) and (ii) are: there exists h > 0 such that

u = A ⊗ h, or there exists h > 0 such that u = Ah, the standard matrix–vector
product.

Proof. If (i) holds, then

A ⊗ x ⊕ αu = µx, u−1 ⊗ x ⊕ α = µα, (19)

and this implies that αu � µx and u−1 ⊗ x = µα. This gives αui/xi � µ, i = 1,
. . . , n and max(xi/ui) = µα, and (ii) follows.
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To show the reverse implication, choose α = µ−1 maxi (xi/ui). Then the second
equation in (19) is satisfied. By (ii) the first set of equations (19) also holds, thus (i)
holds.

To prove the second part it suffices to consider the case x = en = (1, . . . , 1)T,
so that 1/µ � aik � µ for i, k = 1, . . . , n. So we have aik � µ2ajk for all i, j, k,
which implies for any h > 0 that

(A ⊗ h)i � µ2(A ⊗ h)j ∀i, j (20)

and

(Ah)i � µ2(Ah)j ∀i, j. (21)

Hence (ii) is satisfied in both cases. �

In particular, repeating an alternative, i.e., taking as u any column of A, does not
change µ(A) and changes the max-eigenvector only in a trivial way, e.g., if u is the
first column of A, then a max-eigenvector of Ae is (x1, . . . , xn, x1)

T, as one would
expect in this model. This is in contrast to the more complicated behaviour of the
Perron-eigenvector (see, e.g., [8]).

It seems that these sufficient conditions in Theorem 7 do not cover all possibilities.
Here is an interesting example of a vector u satisfying (i) and (ii), but for which we
were not able to decide if it can be written as A ⊗ h or Ah for a suitable h > 0.

Take

ui = a
α1
i1 · · · aαnin , i = 1, . . . , n, (22)

where the exponents αi are nonnegative and sum up to 1. Writing

ui

xi
=

n∏
k=1

(aikxk/xi)
αk

(
n∏

k=1

x
αk
k

)−1

, (23)

and using the fact that aikxk/xi ∈ [µ−1, µ], it follows that (ii) is true. For αk = 1/n,
k = 1, . . . , n, this vector appears in the logarithmic least squares method considered
in [12].

Usually, extending the SR-matrix A as in (18) strictly increases its max-eigen-
value, µ(Ae) > µ(A) if (ii) of Theorem 7 is violated. However, it is possible to find a
4 × 4 matrix A and an extension by some u violating (ii) but having µ(Ae) = µ(A).
Of course, in this case, the other part of (i) does not hold.

Remark. The Perron eigenvector of A satisfies the second sufficient condition of
Theorem 7. Hence (ii) holds for the Perron vector. This partly explains the observa-
tion that for SR-matrices the max-eigenvector and the Perron vector are quite similar
and lead to very similar rankings of the alternatives. For general nonnegative matrices
this similarity of eigenvectors is not usually observed.

We finally consider the case dual to the situation of Theorem 7, namely that A
has rank one, i.e., µ(A) = µ = 1; thus A is a transitive matrix. Here we determine
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completely the behavior of Ae for general u in all detail. Such a discussion seems to
be too complicated for the Perron vector (see, e.g., [9]).

Theorem 8. Assume that A = (aik) = (wi/wk) and wi > 0, i = 1, . . . , n. Also let
u = (u1, . . . , un)

T > 0 and di = ui/wi . Define dmax = maxi di and dmin = minj dj .
If the (n + 1)-by-(n + 1) matrix Ae is given by (18) then

µe = µ(Ae) = (dmax/dmin)
1/3, (24)

while an associated max-eigenvector x = (x1, . . . , xn, 1)T is given by

xi =
{
wid

1/3
maxd

−2/3
min if di � d

2/3
maxd

1/3
min

uiµ
−1
e otherwise.

(25)

Proof. Define dT = (d1, . . . , dn). Then scaling Ae by W = diag(w1, . . . , wn, 1)
gives

W−1AeW = Ãe =
(
ene

T
n d

d−1 1

)
. (26)

The eigenequation for Ãe in the form Ãe ⊗ x̃ = µex̃ where x̃T = (xT, 1) leads
to ene

T
n ⊗ x ⊕ d = µex and d−1 ⊗ x ⊕ 1 = µe. As the case µe = 1, i.e., that d is a

multiple of en is trivial, we now consider that µe > 1. Then the second eigenequation
gives µe = d−1 ⊗ x, while the first leads to

x = µ−1
e ene

T
n ⊗ x ⊕ µ−1

e d, (27)

with the solution (see, e.g., [5, Lemma 3.3])

x = (I ⊕ µ−1
e ene

T
n ) ⊗ µ−1

e d = µ−1
e d ⊕ µ−2

e (eT
n ⊗ d)en. (28)

Thus

µe = d−1 ⊗ x

= µ−1
e (d−1 ⊗ d) ⊕ µ−2

e (eT
n ⊗ d)(d−1 ⊗ en)

= max{µ−1
e , µ−2

e dmax/dmin} (29)

from which (24) follows.
Inserting this in (28) gives

xi =
{
d

1/3
maxd

−2/3
min if di � d

2/3
maxd

1/3
min

diµ
−1
e otherwise,

(30)

which after scaling back and renaming yields (25). �

5. Calculating the max-eigenvector

One of the advantages of our approach is that the max-eigenvalue and the max-
eigenvector can be calculated easily. A simple MATLAB program is given below
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for any nonnegative irreducible matrix A. Let us briefly explain the procedure, as
outlined, e.g., in [5, Section 4].

Firstly the max-eigenvalue of the nonnegative irreducible matrix A is calculated
using Karp’s formula: With z1 = (1, 0, . . . , 0)T and zk+1 = A ⊗ zk, k = 1, . . . , n
and zk = (z1k, . . . , znk)

T, Theorem. 3.1 of [5] gives

µ(A) = max
i=1,...,n

min
k=1,...,n

(
zi,n+1

zik

)1/(n+1−k)

. (31)

Notice that to handle the zeros in z1 properly, we actually calculate µ−1 first and
then invert.

As explained, e.g., in [1, p. 147–148], a max-eigenvector of a matrix A with
µ(A) = 1 can be determined in the following way. Calculate the matrix

A+ = A ⊕ A2⊗ ⊕ . . . ⊕ An⊗. (32)

Then any column j of A+ with (A+)jj = 1 is a max-eigenvector of A. The condi-
tion µ(A) = 1 is enforced by replacing A by A/µ(A) and A+ is calculated by the
Floyd-Warshall procedure, as, e.g., described in [5, (4.2)].

The following MATLAB program maxevec calculates the max-eigenvalue mu and
a max-eigenvector evec of a given nonnegative irreducible matrix a.

%Given square matrix a, its max eigenvalue mu=mu(a) and an
%eigenvector evec is determined. mu is calculated by Karp’s
%formula. The eigenvector evec is calculated by the
%Floyd-Warshall procedure, as the first column of b^+,
%b=a/mu(a) which has diagonal entry 1.

function[mu,evec]=maxevec(a)[m,n]=size(a);

z=[];

for i=1:n z(1,i)=0; end;

z(1,1)=1;

for i=2:n+1

w=z(i-1,:);

w=max(diag(w)*a’);

z=[z;w];
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end

z1=z*diag(w.^-1);

z1 =z1(1:n,:); for i=1:n

t= z1(i,:); z1(i,:)= t.^(1/(n+1-i));

end

mu=min(max(z1)); mu =mu^-1;

b=mu^{-1}*a;

for i=1:n

w=b(:,i); u= b(i,:);

c=w*u;

for j=1:n

for k=1:n b(j,k)=max(c(j,k),b(j,k));

end; end;

end;

tol=10^-10;

for i=1:n

if abs(b(i,i)-1) < tol

evec=b(:,i); return;

end; end;

We now give some numerical examples to illustrate the advantage of using the
max-eigenvector (as calculated by the program above) for ranking. We emphasize
that these examples illustrate the use of the max-eigenvector approach for finding
the priority ranking of the alternatives with respect to a given criterion.

The first example is from [7].
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A =




1 1/5 3 3
5 1 5 3

1/3 1/5 1 1/5
1/3 1/3 5 1


 .

Here µ(A) = 1.9680, and the max-eigenvector scaled so that its entries sum to 1 is

xT = (0.2245, 0.5703, 0.0580, 0.1473).

The Perron vector scaled in the same way, which gives the same ranking, is

pT = (0.2247, 0.5502, 0.0622, 0.1629).

The relative errors are e(x) = 0.9680 and e(p) = 1.1750, respectively. Since A

has one maximal cycle of length 4 (namely, a14a43a32a21), the max-eigenvector of
AT is (x−1

i )T.
An example in which the max-eigenvector and Perron vector give different rank-

ings is the following matrix, which results from a transitive matrix perturbed in the
(1, 2) and (2, 1) entries.

A =




1 10/9 2/3 5/8
9/10 1 4/5 3/4
3/2 5/4 1 15/16
8/5 4/3 16/15 1


 ,

giving

xT = (0.2080, 0.2061, 0.2835, 0.3024), with e(x) = 0.1006;
pT = (0.2034, 0.2113, 0.2832, 0.3021), with e(p) = 0.1543.

As t = 4/3 > (6/5)3/2, a rank reversal between the first two alternatives as given
by the max-eigenvector has occured (see Remark after Theorem 5), while this has
not yet occured in the Perron vector.

Our third and final example is taken from [12], and illustrates the repetition of an
alternative as described after Theorem 7.

A =




1 1/6 1/3 1/8 5
6 1 2 1 8
3 1/2 1 1/2 5
8 1 2 1 5

1/5 1/8 1/5 1/5 1


 .

Here the max-eigenvector is

xT = (1, 3, 1.5, 4, 0.4), with e(x) = 1,

while a Perron vector is given by

pT = (0.0810, 0.3459, 0.1801, 0.3548, 0.0382), with e(p) = 1.357.

Both vectors lead to the same ranking of the alternatives, but p exhibits a near tie
(between alternatives 2 and 4), while x does not. Extending A to a 6-by-6 matrix by
repeating column 2 and completing to an SR-matrix, the new max-eigenvector is just
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xT = (1, 3, 1.5, 4, 0.4, 3),

while the new Perron vector (scaled to have the same first component as before) is

pT = (0.0810, 0.3588, 0.1859, 0.3652, 0.0407, 0.3588),

in which the tie is tighter than before. However, if the extension is done by repeating
column 1 (instead of column 2), then the tie between alternatives 2 and 4 is gone.

6. Concluding remarks

In Sections 3 and 4 we propose using the max-eigenvector of the SR-matrix A as
a mean of attaching weights to the alternatives considered in the AHP.

The advantages of this approach over others presented in the literature are now
summarized. The max-eigenvector gives an approximation with minimum relative
error (Theorem 2). When one pair of elements in a transitive matrix is changed (due
to some measurement error), then the magnitude of the change giving rank reversal
is explicitly given. For an SR-matrix, monotonicity properties of the max-eigenvec-
tors of these changed matrices are found (Theorem 5 and 6). When an alternative is
repeated, no rank reversal occurs, and in many cases the introduction of a new alter-
native just extends the max-eigenvector (Theorem 7). Finally, the max-eigenvector
can be easily computed in an explicit fashion (Section 5).

We also want to mention some open problems. There are cases in which the max-
eigenvector is not unique (even up to scaling). This happens if the critical matrix AC

is reducible. What does this mean for our method? Closely related to this question is
the following consideration. There are more vectors satisfying the minimal relative
error requirement (8), namely all vectors in CA, where

CA = {v > 0 : A ⊗ v � µ(A)v}.
Are there better choices than the max-eigenvector to pick for an element in CA?

In our first example of Section 5, CA = {kx : k > 0} where x is the max-eigenvector
of A; thus there is no other choice for this example.

Appendix A. Proof of (13) in case (ii) of Theorem 6

Let T1 < t0 < t1 < T2. It suffices to show (13) for t1 − t0 small. Then by multi-
plying the inequalities it follows that (13) holds for all t0, t1 ∈ I . By scaling A(t0)

it can be assumed that x = en. In the following we set A = A(t0), Ā = A(t1). Intro-
duce the matrix Ã = (ãij ), where

ãij =
{
µ0 when aij = µ0
0 otherwise,

(33)

withµ0 = min{µ(t), t > 0} = µ(t0) = µ(t1). The critical matrixAC, see, e.g., [4,5],
is a principal submatrix of Ã. Each row of Ã contains a nonzero element, and the
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principal submatrix AC is irreducible, as it is assumed that the max-eigenvector x(t)
for all t ∈ I is unique (see Lemma 3).

If a12 < µ0, then for small t1 − t0 it follows that A ⊗ en = µ0en, so (13) holds
with equality. If a12 = µ0, then a12 is not on a maximal cycle, as otherwise the
max-eigenvalue is strictly increasing. So ā12 = µ0 + ε > µ0.

By a suitable permutation similarity, we can now assume that Ã is in reducible
normal form (see, e.g., [10]). So Ã is lower block triangular with diagonal blocks
that are either irreducible or zero 1-by-1 matrices. Here AC is the only irreducible
principal submatrix, hence

Ã =
(
AC 0
Ã21 Ã22

)
, (34)

where Ã22 is strictly lower triangular, and the critical element a12 is now (after the
permutation) in some row, say s + 1, of Ã lying in the lower part (Ã21, Ã22). We
assume that the same permutation has been applied to A and A. Define As to be the
submatrix of A formed from the first s rows and columns of A. Then

A =
(
As A12
A21 A22

)
. (35)

Subdivide A accordingly into blocks, then due to the way that s has been chosen,
As = As , A22 = A22.

Observe that As ⊗ es = µ0es and

(zs+1, . . . , zn)
T = A21 ⊗ es (36)

satisfies zs+1 = µ0 + ε, zi � µ0, for i � s + 2, as only row s + 1 is increased, when
A is replaced by A.

The solution of

A21 ⊗ es ⊕ A22 ⊗ u = µ0u (37)

is given by (see, e.g., Lemma 3.3 of [5])

u = (1/µ0A22)
∗ ⊗ 1/µ0Ā21 ⊗ es = 1/µ0(1/µ0A22)

∗ ⊗ z. (38)

Here

(1/µ0A22)
∗ = I ⊕ µ−1

0 A22 ⊕ · · · ⊕ (µ−1
0 A22)

n−s−1⊗ , (39)

which has diagonal 1 and all other entries <1. Hence the first entry of u is given by
(µ0 + ε)/µ0, while the other entries of u are strictly smaller. Also as all entries of
A12 are strictly less than µ0, it follows that A12 ⊗ u � µ0es for small ε. Thus

As ⊗ es ⊕ A12 ⊗ u = µ0es, (40)

which shows together with (37) that y = (eT
s , u

T)T is the max-eigenvector of A.
Obviously the maximal element of y is in position s + 1, which after back per-

mutation becomes position 1. So the first inequalities of (13) are proved. As in the
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proof of Theorem 5 the second set of inequalities follow by interchanging rows and
columns 1 and 2 and the roles of t0 and t1.
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