
Community (https://www.linode.com/community/)

Ques�ons
(h�ps://www.linode.com
/community/ques�ons)

Guides & Tutorials
(h�ps://www.linode.com
/docs/)

StackScripts
(h�ps://www.linode.com
/stackscripts)

GitHub
(h�ps://github.com
/linode)

Events
(h�ps://www.linode.com
/events)

Guides & Tutorials (https://www.linode.com/docs/)
» Quick Answers (https://www.linode.com/docs/quick-answers/)
» Linux Essentials (https://www.linode.com/docs/quick-answers/linux-essentials/)
» Introduction to systemctl

Updated Wednesday, September 12, 2018 by Linode Contributed by Linode

Introduc�on to systemctl

 Contribute on GitHub
Report an Issue (https://github.com/linode/docs/issues/new?title=Introduction%20to%20systemctl%20Proposed%20Changes&
body=Link%3A https%3A%2F%2Flinode.com%2fdocs%2fquick-answers%2flinux-essentials%2fintroduction-to-systemctl%2f%0A%23%23
%20Issue%0A%0A%23%23%20Suggested%20Fix%0A&labels=inaccurate guide) | View File (https://github.com/linode/docs/blob/master
/docs/quick-answers/linux-essentials/introduction-to-systemctl/index.md) | Edit File (https://github.com/linode/docs/edit/develop/docs/quick-
answers/linux-essentials/introduction-to-systemctl/index.md)

What is systemctl?
systemctl is a controlling interface and inspection tool for the widely-adopted init system and
service manager systemd. This guide will cover how to use systemctl to manage systemd
services, work with systemd Targets and extract meaningful information about your system’s
overall state.

Note
This guide is written for a non-root user. Commands that require elevated privileges are prefixed with
sudo . If you’re not familiar with the sudo command, see the Users and Groups (/docs/tools-reference

/linux-users-and-groups/) guide.

Managing Services
systemd initializes user space components that run after the Linux kernel has booted, as well
as continuously maintaining those components throughout a system’s lifecycle. These tasks
are known as units, and each unit has a corresponding unit file. Units might concern
mounting storage devices (.mount), configuring hardware (.device), sockets (.socket), or, as
will be covered in this guide, managing services (.service).

Star�ng and Stopping a Service
To start a systemd service in the current session, issue the start command:

sudo systemctl start apache2.service

Conversely, to stop a systemd service, issue the stop command:

sudo systemctl stop apache2.service

In the above example we started and then stopped the Apache service. It is important to
note that systemctl does not require the .service extension when working with service units.
The following is just as acceptable:

sudo systemctl start apache2

If the service needs to be restarted, such as to reload a configuration file, you can issue the
restart command:

sudo systemctl restart apache2

Similarly, if a service does not need to restart to reload it’s configuration, you can issue the
reload command:

sudo systemctl reload apache2

Finally, you can use the reload-or-restart command if you are unsure about whether your
application needs to be restarted or just reloaded.

sudo systemctl reload-or-restart apache2

Enabling a Service at Boot
The above commands are good for managing a service in a single session, but many
services are also required to start at boot. To enable a service at boot:

sudo systemctl enable nginx

To disable the service from starting at boot, issue the disable command:

sudo systemctl disable nginx

Note
The enable command does not start the service in the current session, nor does disable stop the
service in the current session. To enable/disable and start/stop a service simultaneously, combine the
command with the --now switch:

sudo systemctl enable nginx --now

If the service unit file is not located within one of the known systemd file paths, you can
provide a file path to the service unit file you wish to enable:

sudo systemctl enable /path/to/myservice.service

However, this file needs to be accessible by systemd at startup. For example, this means files
underneath /home or /var are not allowed, unless those directories are located on the root
file system.

Checking a Service’s Status
systemctl allows us to check on the status of individual services:

systemctl status mysql

This will result in a message similar to the output below:

 ● mysql.service - MySQL Community Server

 Loaded: loaded (/lib/systemd/system/mysql.service; enabled; vendor preset: enabled)

 Active: active (running) since Thu 2018-08-30 09:15:35 EDT; 1 day 5h ago

 Main PID: 711 (mysqld)

 Tasks: 31 (limit: 2319)

 CGroup: /system.slice/mysql.service

 └─711 /usr/sbin/mysqld --daemonize --pid-file=/run/mysqld/mysqld.pid

You can also use is-active , is-enabled , and is-failed to monitor a service’s status:

systemctl is-enabled mysql

To view which systemd service units are currently active on your system, issue the following
list-units command and filter by the service type:

systemctl list-units --type=service

Note
list-units is the default action for the systemctl command, so you can simply enter systemctl to

retrieve a list of units.

The generated list includes all currently active service units, service units that have jobs

Use promo code DOCS10 for $10 credit on a new
account.

Try this Guide 
In This Guide:

 RSS feed
(https://www.linode.com

/docs/index.xml)


Monthly Guides Update

Email address

Sign Up

Search guides...

Introduction to systemctl https://www.linode.com/docs/quick-answers/linux-essentials/introduction...

1 of 4 10/9/19, 8:31 AM

pending, and service units that were active and have failed:

UNIT LOAD ACTIVE SUB DESCRIPTION

accounts-daemon.service loaded active running Accounts Service

apparmor.service loaded active exited AppArmor initialization

apport.service loaded active exited LSB: automatic crash report generation

atd.service loaded active running Deferred execution scheduler

blk-availability.service loaded active exited Availability of block devices

console-setup.service loaded active exited Set console font and keymap

cron.service loaded active running Regular background program processing daemon

dbus.service loaded active running D-Bus System Message Bus

ebtables.service loaded active exited ebtables ruleset management

...

The output provides five pieces of data:

UNIT: The name of the unit.

LOAD: Was the unit properly loaded?

ACTIVE: The general activation state, i.e. a generalization of SUB.

SUB: The low-level unit activation state, with values dependent on unit type.

DESCRIPTION: The unit’s description.

To list all units, including inactive units, append the --all flag:

systemctl list-units --type=service --all

You can filter the list of units by state. Supply a comma-separated list of unit states to output
as the value for the --state flag:

systemctl list-units --type=service --all --state=exited,inactive

To retrieve a list of failed units, enter the list-units command with the --failed flag:

systemctl list-units --failed

Working with Unit Files
Each unit has a corresponding unit file. These unit files are usually located in the following
directories:

The /lib/systemd/system directory holds unit files that are provided by the system or are
supplied by installed packages.

The /etc/systemd/system directory stores unit files that are user-provided.

Lis�ng Installed Unit Files
Not all unit files are active on a system at any given time. To view all systemd service unit
files installed on a system, use the list-unit-files command with the optional --type flag:

systemctl list-unit-files --type=service

The generated list has two columns, UNIT FILE and STATE:

UNIT FILE STATE

accounts-daemon.service enabled

acpid.service disabled

apparmor.service enabled

apport-forward@.service static

apt-daily-upgrade.service static

apt-daily.service static

...

A unit’s STATE can be either enabled, disabled, static, masked, or generated. Unit files with
a static state do not contain an Install section and are either meant to be run once or they
are a dependency of another unit file and should not be run alone. For more on masking,
see Masking a Unit File.

Viewing a Unit File
To view the contents of a unit file, run the cat command:

systemctl cat cron

/lib/systemd/system/cron.service

[Unit]

Description=Regular background program processing daemon

Documentation=man:cron(8)

[Service]

EnvironmentFile=-/etc/default/cron

ExecStart=/usr/sbin/cron -f $EXTRA_OPTS

IgnoreSIGPIPE=false

KillMode=process

[Install]

WantedBy=multi-user.target

If there are recent changes to the unit file that have not yet been loaded into systemd, the
output of the systemctl cat command may be an older version of the service.

For a low-level view of a unit file, issue the show command:

systemctl show cron

This will generate a list of property key=value pairs for all non-empty properties defined in
the unit file:

Type=simple

Restart=no

NotifyAccess=none

RestartUSec=100ms

TimeoutStartUSec=1min 30s

TimeoutStopUSec=1min 30s

RuntimeMaxUSec=infinity

...

To show empty property values, supply the --all flag.

To filter the key=value pairs by property, use the -p flag:

systemctl show cron -p Names

Note that the property name must be capitalized.

Viewing a Unit File’s Dependencies
To display a list of a unit file’s dependencies, use the list-dependencies command:

systemctl list-dependencies cron

The generated output will show a tree of unit dependencies that must run before the service
in question runs.

cron.service

● ├─system.slice

● └─sysinit.target

● ├─apparmor.service

● ├─blk-availability.service

● ├─dev-hugepages.mount

● ├─dev-mqueue.mount

● ├─friendly-recovery.service

...

Recursive dependencies are only listed for .target files. To list all recursive dependencies,
pass in the --all flag.

To check which unit files depend on a service unit file, you can run the list-dependencies
command with the --reverse flag:

systemctl list-dependencies cron --reverse

Edi�ng a Unit File

Introduction to systemctl https://www.linode.com/docs/quick-answers/linux-essentials/introduction...

2 of 4 10/9/19, 8:31 AM

Note
While the particulars of unit file contents are beyond the scope of this article, there are a number of good
resources online that describe them, such as the RedHat Customer Portal page on Creating and Modifying
systemd Unit Files (https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html
/system_administrators_guide/sect-managing_services_with_systemd-unit_files).

There are two ways to edit a unit file using systemctl .

The edit command opens up a blank drop-in snippet file in the system’s default text
editor:

sudo systemctl edit ssh

When the file is saved, systemctl will create a file called override.conf under a directory
at /etc/systemd/system/yourservice.service.d , where yourservice is the name of the
service you chose to edit. This command is useful for changing a few properties of the
unit file.

1.

The second way is to use the edit command with the --full flag:

sudo systemctl edit ssh --full

This command opens a full copy of whatever unit file you chose to edit in a text editor.
When the file is saved, systemctl will create a file at /etc/systemd/system
/yourservice.service . This is useful if you need to make many changes to an existing
unit file.

2.

In general, any unit file in /etc/systemd/system will override the corresponding file in
/lib/systemd/system .

Crea�ng a Unit File
While systemctl will throw an error if you try to open a unit file that does not exist, you can
force systemctl to create a new unit file using the --force flag:

sudo systemctl edit yourservice.service --force

When the file is saved, systemctl will create an override.conf file in the /etc/systemd/system
/yourservice.service.d directory, where ‘yourservice’ is the name of the service you chose to
create. To create a full unit file instead of just a snippet, use --force in tandem with --full :

sudo systemctl edit yourservice.service --force --full

Masking a Unit File
To prevent a service from ever starting, either manually or automatically, use the mask
command to symlink a service to /dev/null :

sudo systemctl mask mysql

Similar to disabling a service, the mask command will not prevent a service from continuing
to run. To mask a service and stop the service at the same time, use the --now switch:

sudo systemctl mask mysql --now

To unmask a service, use the unmask command:

sudo systemctl unmask mysql

Removing a Unit File
To remove a unit file snippet that was created with the edit command, remove the directory
yourservice.service.d (where ‘yourservice’ is the service you would like to delete), and the
override.conf file inside of the directory:

sudo rm -r /etc/systemd/system/yourservice.service.d

To remove a full unit file, run the following command:

sudo rm /etc/systemd/system/yourservice.service

After you issue these commands, reload the systemd daemon so that it no longer tries to
reference the deleted service:

sudo systemctl daemon-reload

Working with systemd Targets
Like other init system’s run levels, systemd ’s targets help it determine which unit files are
necessary to produce a certain system state. systemd targets are represented by target units.
Target units end with the .target file extension and their only purpose is to group together
other systemd units through a chain of dependencies.

For instance, there is a graphical.target that denotes when the system’s graphical session is
ready. Units that are required to start in order to achieve the necessary state have WantedBy=
or RequiredBy= graphical.target in their configuration. Units that depend on graphical.target
can include Wants= , Requires= , or After= in their configuration to make themselves available
at the correct time.

A target can have a corresponding directory whose name has the syntax
target_name.target.wants (e.g. graphical.target.wants), located in /etc/systemd/system . When a
symlink to a service file is added to this directory, that service becomes a dependency of the
target.

When you enable a service (using systemctl enable), symlinks to the service are created
inside the .target.wants directory for each target listed in that service’s WantedBy=
configuration. This is actually how the WantedBy= option is implemented.

Ge�ng and Se�ng the Default Target
To get the default target for your system –the end goal of the chain of dependencies– issue
the get-default command:

systemctl get-default

If you would like to change the default target for your system, issue the set-default
command:

sudo systemctl set-default multi-user.target

Lis�ng Targets
To retrieve a list of available targets, use the list-unit-files command and filter by target:

systemctl list-unit-files --type=target

To list all currently active targets, use the list-units command and filter by target:

systemctl list-units --type=target

Changing the Ac�ve Target
To change the current active target, issue the isolate command. This command starts the
isolated target with all dependent units and shuts down all others. For instance, if you
wanted to move to a multi-user command line interface and stop the graphical shell, use the
following command:

sudo systemctl isolate multi-user.target

However, it is a good idea to first check on the dependencies of the target you wish to isolate
so you do not stop anything important. To do this, issue the list-dependencies command:

Introduction to systemctl https://www.linode.com/docs/quick-answers/linux-essentials/introduction...

3 of 4 10/9/19, 8:31 AM

© 2019 Linode, LLC

Security (https://www.linode.com/security)

Standards & Compliance (https://www.linode.com/compliance)

systemctl list-dependencies multi-user.target

Rescue Mode
When a situation arises where you are unable to proceed with a normal boot, you can place
your system in rescue mode. Rescue mode provides a single-user interface used to repair
your system. To place your system in rescue mode, enter the following command:

sudo systemctl rescue

This command is similar to systemctl isolate rescue , but will also issue a notice to all other
users that the system is entering rescue mode. To prevent this message from being sent,
apply the --no-wall flag:

sudo systemctl rescue --no-wall

Emergency Mode
Emergency mode offers the user the most minimal environment possible to salvage a
system in need of repair, and is useful if the system cannot enter rescue mode. For a full
explanation of emergency mode, refer to the RedHat Customer Portal page
(https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html
/system_administrators_guide/sect-managing_services_with_systemd-targets#sect-
Managing_Services_with_systemd-Targets-Emergency). To enter emergency mode, enter
the following command:

sudo systemctl emergency

This command is similar to systemctl isolate emergency , but will also issue a notice to all
other users that the system is entering emergency mode. To prevent this message, apply the
--no-wall flag:

sudo systemctl emergency --no-wall

More Shortcuts
systemctl allows users the ability to halt, shutdown and reboot a system.

To halt a system, issue the following command:

sudo systemctl halt

To shutdown a system, use:

sudo systemctl shutdown

Finally, to reboot a system, enter the following command:

sudo systemctl reboot

Similar to the emergency and rescue commands, these commands will issue a notice to all
users that the system state is changing.

More Informa�on
You may wish to consult the following resources for additional information on this topic.
While these are provided in the hope that they will be useful, please note that we cannot
vouch for the accuracy or timeliness of externally hosted materials.

Systemctl man page (https://www.freedesktop.org/software/systemd
/man/systemctl.html)

Creating and modifying systemd unit files (https://access.redhat.com/documentation
/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-
managing_services_with_systemd-unit_files)

Working with systemd targets (https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-
managing_services_with_systemd-targets)

Join our Community
Find answers, ask questions, and help others. (https://www.linode.com/community
/questions/)

comments powered by Disqus (http://disqus.com)

This guide is published under a CC BY-ND 4.0 (https://creativecommons.org/licenses/by-nd/4.0) license.

Write for Linode.

We're always expanding our docs. If you like to help people, can write, and have expertise in a Linux or cloud infrastructure
topic, learn how you can contribute (/docs/contribute) to our library.

Get started in the Linode Cloud today.

Create an Account (h�ps://login.linode.com/signup)

Overview
(h�ps://www.linode.com
/linodes)

Plans & Pricing (https://www.linode.com/pricing)

Features (https://www.linode.com/linodes)

Add-Ons (https://www.linode.com/addons)

Managed (https://www.linode.com/managed)

Professional Services (https://www.linode.com/professional-services)

Resources
(h�ps://www.linode.com
/docs/)

Guides & Tutorials (https://www.linode.com/docs/)

Speed Test (https://www.linode.com/speedtest)

Community (https://www.linode.com/community)

Chat (https://www.linode.com/chat)

System Status (http://status.linode.com/)

Company
(h�ps://www.linode.com
/about)

About Us (https://www.linode.com/about)

Blog (https://blog.linode.com)

Press (https://www.linode.com/press)

Referral System (https://www.linode.com/referrals)

Careers (https://www.linode.com/careers)

Legal
(/agreement)

Customer Agreement (/agreement)

Terms of Service (/tos)

Privacy Policy (/privacy)

Acceptable Use Policy (/aup)

Contact Us
(h�ps://www.linode.com
/contact)

855-4-LINODE (tel:+18554546633)

(855-454-6633) (tel:+18554546633)

Intl.: +1 609-380-7100 (tel:+16093807100)

Email us (mailto:support@linode.com)

 (https://facebook.com/linode)  (https://twitter.com/linode)  (https://plus.google.com/+linode/

Introduction to systemctl https://www.linode.com/docs/quick-answers/linux-essentials/introduction...

4 of 4 10/9/19, 8:31 AM

